Search results for "random walks"

showing 10 items of 11 documents

Dynamics of two competing species in the presence of Lévy noise sources

2010

We consider a Lotka-Volterra system of two competing species subject to multiplicative alpha-stable Lévy noise. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence both of a periodic driving term and an additive alpha-stable Lévy noise. We study the species dynamics, which is characterized by two different regimes, exclusion of one species and coexistence of both. We find quasi-periodic oscillations and stochastic resonance phenomenon in the dynamics of the competing species, analysing the role of the Lévy noise sources.

Competitive BehaviorComplex systemsBistabilityStochastic resonancePopulation DynamicsComplex systemModels BiologicalStochastic differential equationControl theoryQuantitative Biology::Populations and EvolutionAnimalsHumansComputer SimulationStatistical physicsEcosystemMathematicsPopulation dynamics and ecological pattern formationModels StatisticalStochastic processDynamics (mechanics)Multiplicative functionStochastic analysis methods (Fokker-Planck Langevin etc.)Adaptation PhysiologicalRandom walks and Lévy flightQuasiperiodic functionPredatory Behavior
researchProduct

Two competing species in super-diffusive dynamical regimes

2010

The dynamics of two competing species within the framework of the generalized Lotka-Volterra equations, in the presence of multiplicative alpha-stable Lévy noise sources and a random time dependent interaction parameter, is studied. The species dynamics is characterized by two different dynamical regimes, exclusion of one species and coexistence of both, depending on the values of the interaction parameter, which obeys a Langevin equation with a periodically fluctuating bistable potential and an additive alpha-stable Lévy noise. The stochastic resonance phenomenon is analyzed for noise sources asymmetrically distributed. Finally, the effects of statistical dependence between multiplicative …

Fluctuation phenomena random processes noise and Brownian motionPhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciBistabilityStochastic resonanceDifferential equationLotka–Volterra equationsProbability theory stochastic processes and statisticStochastic analysis methods (Fokker-Planck Langevin etc.)Population dynamicCondensed Matter PhysicsNoise (electronics)Multiplicative noiseElectronic Optical and Magnetic MaterialsBackground noiseLangevin equationRandom walks and Levy flightQuantitative Biology::Populations and EvolutionStatistical physicsThe European Physical Journal B
researchProduct

Dynamics of a Lotka-Volterra system in the presence of non-Gaussian noise sources

2009

We consider a Lotka-Volterra system of two competing species subject to multiplicative α-stable Lévy noise. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence both of a periodic driving term and an additive alpha-stable Lévy noise. We study the species dynamics, which is characterized by two different dynamical regimes, exclusion of one species and coexistence of both ones, analyzing the role of the Lévy noise sources.

Fluctuation phenomenaRandom processeNoiseRandom walks and Lévy flightSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

THE ROLE OF NON-GAUSSIAN SOURCES IN THE TRANSIENT DYNAMICS OF LONG JOSEPHSON JUNCTIONS

2013

We analyze the effects of different non-Gaussian noise sources on the transient dynamics of an overdamped long Josephson junction. We find nonmonotonic behavior of the mean escape time as a function of the noise intensity and frequency of the external driving signal for all the noise sources investigated.

Josephson effectPhysicsFluctuation phenomena random processes noise and Brownian motionCondensed matter physicsGaussianJosephson devicesDynamics (mechanics)General Physics and AstronomyJosephson energyComputational methods in statistical physics and nonlinear dynamicSettore FIS/03 - Fisica Della MateriaPi Josephson junctionsymbols.namesakeRandom walks and Levy flightsymbolsTransient (oscillation)
researchProduct

Fractal dimension of superfluid turbulence : A random-walk toy model

2021

This paper deals with the fractal dimension of a superfluid vortex tangle. It extends a previous model [J. Phys. A: Math. Theor. {\bf 43}, 205501 (2010)] (which was proposed for very low temperature), and it proposes an alternative random walk toy model, which is valid also for finite temperature. This random walk model combines a recent Nemirovskii's proposal, and a simple modelization of a self-similar structure of vortex loops (mimicking the geometry of the loops of several sizes which compose the tangle). The fractal dimension of the vortex tangle is then related to the exponents describing how the vortex energy per unit length changes with the length scales, for which we take recent pr…

Physicsquantum vorticeToy modelTurbulenceApplied MathematicsRandom walkFractal dimensionSuperfluid turbulenceIndustrial and Manufacturing Engineeringsuperfluid turbulenceVortexTangleSuperfluidityrandom walkClassical mechanicsCondensed Matter::SuperconductivityBibliographyStatistical physicsQuantum vorticesRandom walksFractal dimensionSettore MAT/07 - Fisica Matematicafractal dimension.
researchProduct

Coalescing directed random walks on the backbone of a 1 +1-dimensional oriented percolation cluster converge to the Brownian web

2018

We consider the backbone of the infinite cluster generated by supercritical oriented site percolation in dimension 1 +1. A directed random walk on this backbone can be seen as an "ancestral line" of an individual sampled in the stationary discrete-time contact process. Such ancestral lineages were investigated in [BCDG13] where a central limit theorem for a single walker was proved. Here, we consider infinitely many coalescing walkers on the same backbone starting at each space-time point. We show that, after diffusive rescaling, the collection of paths converges in distribution to the Brownian web. Hence, we prove convergence to the Brownian web for a particular system of coalescing random…

Probability (math.PR)FOS: MathematicsOriented percolation coalescing random walks Brownian webMathematics - Probability
researchProduct

An enhanced random walk algorithm for delineation of head and neck cancers in PET studies

2017

An algorithm for delineating complex head and neck cancers in positron emission tomography (PET) images is presented in this article. An enhanced random walk (RW) algorithm with automatic seed detection is proposed and used to make the segmentation process feasible in the event of inhomogeneous lesions with bifurcations. In addition, an adaptive probability threshold and a k-means based clustering technique have been integrated in the proposed enhanced RW algorithm. The new threshold is capable of following the intensity changes between adjacent slices along the whole cancer volume, leading to an operator-independent algorithm. Validation experiments were first conducted on phantom studies:…

Similarity (geometry)Computer sciencePET imagingBiomedical EngineeringRandom walk030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicinemedicineImage Processing Computer-AssistedHumansSegmentationComputer visionCluster analysisEvent (probability theory)Settore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionimedicine.diagnostic_testbusiness.industryPhantoms ImagingBiological target volume; Head and neck cancer segmentation; PET imaging; Random walksComputer Science ApplicationPattern recognitionRandom walkComputer Science ApplicationsBiological target volumeHausdorff distancePositron emission tomographyHead and Neck Neoplasms030220 oncology & carcinogenesisPositron-Emission TomographyArtificial intelligenceHead and neck cancer segmentationComputer Vision and Pattern RecognitionbusinessAlgorithmsBiological target volume Head and neck cancer segmentation PET imaging Random walks Algorithms Head and Neck Neoplasms Humans Image Processing Computer-Assisted Phantoms Imaging Positron-Emission TomographyVolume (compression)
researchProduct

One-dimensional random walks with self-blocking immigration

2017

We consider a system of independent one-dimensional random walkers where new particles are added at the origin at fixed rate whenever there is no older particle present at the origin. A Poisson ansatz leads to a semi-linear lattice heat equation and predicts that starting from the empty configuration the total number of particles grows as $c \sqrt{t} \log t$. We confirm this prediction and also describe the asymptotic macroscopic profile of the particle configuration.

Statistics and Probability60G50Particle numbervacant timeInteracting random walksPoisson distributionPoisson comparison01 natural sciences010104 statistics & probabilitysymbols.namesakeLattice (order)FOS: Mathematicsdensity-dependent immigrationStatistical physics0101 mathematicsAnsatzMathematics010102 general mathematicsProbability (math.PR)Random walk60K35symbolsHeat equationStatistics Probability and Uncertainty60F99Mathematics - Probability
researchProduct

Disorder relevance for the random walk pinning model in dimension 3

2011

We study the continuous time version of the random walk pinning model, where conditioned on a continuous time random walk Y on Z^d with jump rate \rho>0, which plays the role of disorder, the law up to time t of a second independent random walk X with jump rate 1 is Gibbs transformed with weight e^{\beta L_t(X,Y)}, where L_t(X,Y) is the collision local time between X and Y up to time t. As the inverse temperature \beta varies, the model undergoes a localization-delocalization transition at some critical \beta_c>=0. A natural question is whether or not there is disorder relevance, namely whether or not \beta_c differs from the critical point \beta_c^{ann} for the annealed model. In Birkner a…

Statistics and Probability60K35 82B4482B44Probability (math.PR)Random mediaGeometryMarginal disorderFractional moment methodMean estimationMathematics::Probability60K35Local limit theoremFOS: MathematicsCollision local timeDisordered pinning modelsStatistics Probability and UncertaintyRandom walksHumanitiesRenewal processes with infinite meanMathematics - ProbabilityMathematicsAnnales de l'Institut Henri Poincaré, Probabilités et Statistiques
researchProduct

On the analysis of a random walk-jump chain with tree-based transitions and its applications to faulty dichotomous search

2018

Random Walks (RWs) have been extensively studied for more than a century [1]. These walks have traditionally been on a line, and the generalizations for two and three dimensions, have been by extending the random steps to the corresponding neighboring positions in one or many of the dimensions. Among the most popular RWs on a line are the various models for birth and death processes, renewal processes and the gambler’s ruin problem. All of these RWs operate “on a discretized line”, and the walk is achieved by performing small steps to the current-state’s neighbor states. Indeed, it is this neighbor-step motion that renders their analyses tractable. When some of the transitions are to non-ne…

Statistics and ProbabilityCurrent (mathematics)Learning systemsRandom walk jumpsDichotomous searches02 engineering and technologyState (functional analysis)Random walkTime reversibilityBirth–death process020202 computer hardware & architectureChain (algebraic topology)020204 information systemsModeling and SimulationLine (geometry)Controlled random walks0202 electrical engineering electronic engineering information engineeringJumpStatistical physicsTime reversibilitiesMathematics
researchProduct