Search results for "random walks"
showing 10 items of 11 documents
Dynamics of two competing species in the presence of Lévy noise sources
2010
We consider a Lotka-Volterra system of two competing species subject to multiplicative alpha-stable Lévy noise. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence both of a periodic driving term and an additive alpha-stable Lévy noise. We study the species dynamics, which is characterized by two different regimes, exclusion of one species and coexistence of both. We find quasi-periodic oscillations and stochastic resonance phenomenon in the dynamics of the competing species, analysing the role of the Lévy noise sources.
Two competing species in super-diffusive dynamical regimes
2010
The dynamics of two competing species within the framework of the generalized Lotka-Volterra equations, in the presence of multiplicative alpha-stable Lévy noise sources and a random time dependent interaction parameter, is studied. The species dynamics is characterized by two different dynamical regimes, exclusion of one species and coexistence of both, depending on the values of the interaction parameter, which obeys a Langevin equation with a periodically fluctuating bistable potential and an additive alpha-stable Lévy noise. The stochastic resonance phenomenon is analyzed for noise sources asymmetrically distributed. Finally, the effects of statistical dependence between multiplicative …
Dynamics of a Lotka-Volterra system in the presence of non-Gaussian noise sources
2009
We consider a Lotka-Volterra system of two competing species subject to multiplicative α-stable Lévy noise. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence both of a periodic driving term and an additive alpha-stable Lévy noise. We study the species dynamics, which is characterized by two different dynamical regimes, exclusion of one species and coexistence of both ones, analyzing the role of the Lévy noise sources.
THE ROLE OF NON-GAUSSIAN SOURCES IN THE TRANSIENT DYNAMICS OF LONG JOSEPHSON JUNCTIONS
2013
We analyze the effects of different non-Gaussian noise sources on the transient dynamics of an overdamped long Josephson junction. We find nonmonotonic behavior of the mean escape time as a function of the noise intensity and frequency of the external driving signal for all the noise sources investigated.
Fractal dimension of superfluid turbulence : A random-walk toy model
2021
This paper deals with the fractal dimension of a superfluid vortex tangle. It extends a previous model [J. Phys. A: Math. Theor. {\bf 43}, 205501 (2010)] (which was proposed for very low temperature), and it proposes an alternative random walk toy model, which is valid also for finite temperature. This random walk model combines a recent Nemirovskii's proposal, and a simple modelization of a self-similar structure of vortex loops (mimicking the geometry of the loops of several sizes which compose the tangle). The fractal dimension of the vortex tangle is then related to the exponents describing how the vortex energy per unit length changes with the length scales, for which we take recent pr…
Coalescing directed random walks on the backbone of a 1 +1-dimensional oriented percolation cluster converge to the Brownian web
2018
We consider the backbone of the infinite cluster generated by supercritical oriented site percolation in dimension 1 +1. A directed random walk on this backbone can be seen as an "ancestral line" of an individual sampled in the stationary discrete-time contact process. Such ancestral lineages were investigated in [BCDG13] where a central limit theorem for a single walker was proved. Here, we consider infinitely many coalescing walkers on the same backbone starting at each space-time point. We show that, after diffusive rescaling, the collection of paths converges in distribution to the Brownian web. Hence, we prove convergence to the Brownian web for a particular system of coalescing random…
An enhanced random walk algorithm for delineation of head and neck cancers in PET studies
2017
An algorithm for delineating complex head and neck cancers in positron emission tomography (PET) images is presented in this article. An enhanced random walk (RW) algorithm with automatic seed detection is proposed and used to make the segmentation process feasible in the event of inhomogeneous lesions with bifurcations. In addition, an adaptive probability threshold and a k-means based clustering technique have been integrated in the proposed enhanced RW algorithm. The new threshold is capable of following the intensity changes between adjacent slices along the whole cancer volume, leading to an operator-independent algorithm. Validation experiments were first conducted on phantom studies:…
One-dimensional random walks with self-blocking immigration
2017
We consider a system of independent one-dimensional random walkers where new particles are added at the origin at fixed rate whenever there is no older particle present at the origin. A Poisson ansatz leads to a semi-linear lattice heat equation and predicts that starting from the empty configuration the total number of particles grows as $c \sqrt{t} \log t$. We confirm this prediction and also describe the asymptotic macroscopic profile of the particle configuration.
Disorder relevance for the random walk pinning model in dimension 3
2011
We study the continuous time version of the random walk pinning model, where conditioned on a continuous time random walk Y on Z^d with jump rate \rho>0, which plays the role of disorder, the law up to time t of a second independent random walk X with jump rate 1 is Gibbs transformed with weight e^{\beta L_t(X,Y)}, where L_t(X,Y) is the collision local time between X and Y up to time t. As the inverse temperature \beta varies, the model undergoes a localization-delocalization transition at some critical \beta_c>=0. A natural question is whether or not there is disorder relevance, namely whether or not \beta_c differs from the critical point \beta_c^{ann} for the annealed model. In Birkner a…
On the analysis of a random walk-jump chain with tree-based transitions and its applications to faulty dichotomous search
2018
Random Walks (RWs) have been extensively studied for more than a century [1]. These walks have traditionally been on a line, and the generalizations for two and three dimensions, have been by extending the random steps to the corresponding neighboring positions in one or many of the dimensions. Among the most popular RWs on a line are the various models for birth and death processes, renewal processes and the gambler’s ruin problem. All of these RWs operate “on a discretized line”, and the walk is achieved by performing small steps to the current-state’s neighbor states. Indeed, it is this neighbor-step motion that renders their analyses tractable. When some of the transitions are to non-ne…